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The problem can be reduced to an integral equation determining shear 

stresses at a clamped edge. The resulting solution makes it possible to 

supplement the results of investigation [ 1‘2.3 f . 

Let us study the stress problem in an elastic quadrant x > 0, y > 0 

in the plane of variable z = x c iy under the action of a concentrated 

force Q + iP, applied at the point z0 = x0 + iyO (x, > 0, y. > 0). 

Let us assume that when y = 0 the displacements 

c’, u are equal to zero, and when x = 0 the ex- 
ternal loading are equal to zero (Fig. 1). Y 20 

Q*ip 

For the solution of the problem let us com- 

1d 

V 
plete the quadrant to form a half-plane x > 0. u 
Let us load symmetrically the new quadrant 

ycri 
--c 

I’ 
i 

-55 
x > 0, y < 0 at the point zO = x0 - iyO with a ’ ‘\ 
force Q - iP. Let us also introduce an addi- 

\ I 

i 
’ I- 

tional, temporarily arbitrary loading p(z) dis- GL 

tributed along the x-axis. Evidently, under the 
4-‘p 

action of symmetrical loadings Q + iP, Q - iP Fig. 1. 

and q(x) on the half-plane x > 0 when y = 0, 
the displacemento is equal to zero. The loading q(x) will be determined 
in such a way as to fulfil the condition a = 0 on the x-axis. 

Let us study the state of stress of the given half-plane x > 0 with 
free edge x = 0 resulting from loadings Q+ iP, Q - iP and q(x). 

If for the stresses we make use of known representation, 

xx -I- Y, =2 Iat (2) + s-f31 
Y, - xx + zix, = 2 [ZW (2) + Y(z)] (1) 
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then for a general case when the force P + iQ is applied at the point 

zO = x0 + iyO according to the formulas* of the paper [5 1 it is possible 

to obtain 

@l(Q+iP, z, zJ = - 
Q$iP ( 1 ,_ _ Q-iP zofz, x 

ZX(lfX) \z-_ z + z, > 27t (1 + x) (2 + Z”)? 
(2) 

Q - iP 
YI (Q + iP, 2, zo) = 2x (1 +x) 

t 

In the case when loadings Q + 9, Q - iP and q(x) are acting on the 

half-plane, we will obtain 

M 

(I,(z) = CD, (Q + iP, z, zo) + C+ (Q -- iP, z, &,) + 
s 

@I [v(t)) z, t] dt 

0 

Y(z)=Y1(Q+iP, z, zo)+Y1(Q-fP, z, &)-f- \rl[?(t), 2, t]dt 
s 
0 

If q(x) is determined from the condition u = 0 when y = 0, then the 

formulas (3) and (1) with x > 0, y > 0 will provide the solution of the 

problem for the stresses in an elastic quadrant with the assigned bound- 

ary conditions. 

The condition u = 0 when y = 0, except for a rigid body displacement 

and taking into account that solution (3) satisfies the condition u = 0 

when y = 0, is equivalent to the condition uX + iuX = 0. If represent- 

at ions ( 1) are made use of, the latter can be expressed as 
--- 

ZCD (2) - 0 (2) - XCD’ (x) - y’ (2) = 0 (4) 

Subjecting the functions Q(Z) and Y(Z) to be condition (4), we will 

obtain a singular integral equation for q(r) 

where 

u, q tt) dt _ 
OD 

2% - 
s 

1 +x2 
t-x t+x 

+4t(Z--) q(t)&= 
(t + w 1 

0 0 

= CQ -t iP) I; (5, zo) + (Q - iP) F (z, &) 

- 
20 -zo 

F (2, zo) =-& + ~ 1 x (20 + 3 - _ 
(I - ZOY + x :_zn + x + z. + (x + Zo)2 - 

- 2(~0--2)(zo+zo) I %‘_ 2%; (J 

(z + ZOP x + eo (x f 9’ 

(5) 

t In deducing expression (Z), an error was corrected in one of the form- 

ulas of paper [ 5 I. 
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Let,. us normalize equation (5). assuming 

10D q (t) 
ni s 

rll _ ‘7 
t-x X 

0 

1405 

if.3 

With consideration of integrability of function q(x), we have the 

transformation [4 I 
Q) 

q (2) = i 
s 

r dt 
XiYZ t--z 

(7) 

0 

Introducing into equation (5) expressions (6) and (‘7) and changing the 
order of integration while taking into account that 

we obtain the equation for the function r(x) 

6 = 2xxi RQ + ip) F (2. do) + (Q - if’) F (2, %I 

Assuming that t = c’, x = 5, r(x) = +I(&, we can express equation 

(8) in the form 

n = 2x5ri [(Q + iP) F (et, zo) + (Q - ip) F (et, ;.)I 

Applying to both sides of the equation (9) the LaPlaCe 

using the notation 

03 

R (P) = Q (5) cpE de 

we obtain 

(9) 

transform and 

1 CD 
=2GFi s_ NQ + W F (e’, zo) + (Q - iP) F (8, TO)] e(‘/*--P) cd< 

For the integrals of the left and right sides of the equation we have 
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Q) 

s eqe -de=- ?a 
__l+e’ -’ 

O3 e(l-P)edO = p(p+l) 7c 

Sill np s _-u, (1 + eeY 2 Sk 

nieiflP 
_dg = -z,, -P-‘I* , 

O” .$Th--P) 5 

s _03 (et - da 
d< = - 

CO8 “p 
2sp (2p + 1) zO--p-*‘~ 

m 

s 

ew-P) E ~ieixP (ap + 1) c2p + 3) zo-~--‘!e 

_-m (ec - ds 

dS= Bcosxp 

Here - l/2 < Re p < 0. We can now write equation (10) as 

Here 

R(P) I- 
[ 

% 22 
+A p!p+l) = 

x sm xp 1 
=2w~~~zp UQ+~P)FI(P, d+(Q -WFI (P, 6)) (ii) 

Fl(p,zo)=xzo-P-‘h-(zo- z,) (p+ $)zu-“~“+x&,-p-~+(-zo)-~l.- 

-x(z,+&J (P++)(-z,)-p-‘~~+2(z,+ &) (P++)~(-ze,)-~“~+W’(-~&-~“~+ 

+ 2x;, (p + +) (- Zo)-p-“‘. 

Introducing z. = Roero (0 < a < l/217 ), from equation (11) we obtain 

R (pl = 2i tg OPT (P) 
‘Lxsinnp-xX2 + 4p(p f 1) 

Pa--P-‘It (12) 

where 

T(p)==2Qxsin[v--(p+ -$)I+ 
+ Q(-2(~+3 sinasin[zp-a(p+$)]-cos(p+$)a+ 

+2(p+f)[2(p+f)--]cosacos(p+$)a+w[2(p+~)--]~o~(p+f)a}+ 

+P(2(p++)sinasin[~p-a(~+$)]-sin(p++)a + 

+2(p+f)[2(p+f)-x]cosasin(p++)a--- [;!(p++)---x]sin(p++)a} 

Applying inverse transformation,we find that 

0+ioO 

NE)=& \ 2i tg OPT (~1 
2xsinxp-x*+4p(p+l) 

R,-P-‘/zePF; dp 
( 
-+<a<o) (13) 

a--i00 

Introducing x = e ‘, r(X) = 4/J&, and referring to equation (7). taking 

into consideration that 
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lw tP dt=_- -- 
w s t-x tg XP 

0 

we obtain 
0+iaD 

9 (2) = - f 
s 

R ~~~~~kc~‘~~T (p) 

2xssinscp-x2+4p(p+i) 

d B 

a--la3 

It is convenient to introduce s = p + l/2 as the variable of integra- 

tion. Then,as a final result, we will have 

where 
S(~)=-2Qxcos(~-a)s+Q{-2~sinasin[~s-a(s+l)]-cosas+ 

+2s(2s-~)cosacos(s+1)a+x(2s--x)cosas~+ 
+ P {- 2s sin a cos [xs - a (s + I)] --sin as + 

+ 2s (2s -x) cos a sin (s + 1) a - x (2s - x) sin as} 

While computing integrals, when x < Ru, the calculations are taken from 

the right, and when x > Ru from the left side of the straight line y. In 

particular, when x < R,, , we have 

where 

nk = 
s (sk) 

xx sin rusk + 4sk ’ Sk = pk + ie,; pk > 0, 0 < ok < + K, 

and Sk are the roots of equation 

4s”-~XCOSXS-(1 +x2) x=0 (16) 

As equation (16) always has a root for which p < 1, it is possible to 

draw the conclusion that when Xy = l/2 g(x),a corner of the elastic 

quadrant is approached, the stress, in absolute value, keeps increasing 

to infinity, while simultaneously changing its sign an infinite number of 

times. 

If we assume that s = 2x + 1, then equation (16) will coincide with 

the equation for determination of order of stress increase in the proxi- 

mity of the angle. The latter equation was obtained in paper [ 1 1. 

The author is grateful to A.Ia. Aleksandrov for numerous valuable 

suggestions during this work. 
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